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Combinatorial Rearrangements

Seating Rearrangements

Original Problem (Honsberger)

A classroom has 5 rows of 5 desks per row. The teacher
requests each pupil to change his seat by going either to the
seat in front, the one behind, the one to his left, or the one to
his right (of course not all these options are possible to all
students). Determine whether or not his directive can be
carried out.

8 / 117



Combinatorial Rearrangements

Seating Rearrangements

Original Problem

9 / 117



Combinatorial Rearrangements

Seating Rearrangements

Seating Rearrangements and Tilings
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Combinatorial Rearrangements

Rearrangements on Graphs

Arbitrary Graphs

In order to count rearrangements on arbitrary graphs, we constructed the
following problem statement:

Problem

Given a graph, place a marker on each vertex. We want to count the
number of legitimate “rearrangements” of these markers subject to the
following rules:

Each marker must move to an adjacent vertex.

After all of the markers have moved, each vertex must contain
exactly one marker.

To permit markers to either remain on their vertex or move to an
adjacent vertex, add a self-loop to each vertex
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Combinatorial Rearrangements

Rearrangements on Graphs

Digraphs

With this problem statement we can describe these rearrangements
mathematically as follows:

Given a graph G , construct
←→
G , by replacing each edge in G with a

two directed edges (one in each orientation).

Then, each rearrangement on G corresponds to a cycle cover of
←→
G .
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Rearrangements on Graphs

Cycle Covers

Definition

Given a digraph D = (V ,E ), a cycle cover of D is a subset C ⊆ E , such
that the induced digraph of C contains each vertex in V , and each vertex
in the induced subgraph lies on exactly one cycle [7].
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Rearrangements on Graphs

Permutation Parity

A cycle cover (permutation) is odd if it contains an odd number of even
cycles.
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Rearrangements on Graphs

Odd Cycle Cover
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Rearrangements on Graphs

Even Cycle Cover
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Combinatorial Rearrangements

Permanents

Permanents

The permanent of an n × n matrix, M, is defined as:

per(M) =
∑
π∈Sn

n∏
i=1

Mi,π(i),

Determinant Similarities

Differences

Computational Complexity

Counting with Permanents
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Combinatorial Rearrangements

Permanents

Per(A) = Det(A)

Families of graphs with permanent equal to determinant

Depends on the parities of the cycle cover

Per(A) = Det(A) iff A has no odd cycle covers [4]
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Permanents

Per(A) = Det(A′)

Pòlya’s question: Which matrices are convertible?

Matrix Pfaffians [7]

Per(A) = Det(A′) iff A has no subgraph homeomorhpic to K3,3

A′ can be found in polynomial time (if it exists) [1]
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Permanents

Adjacency Matrix

A =



0 1 0 0 0 0 0
0 0 1 0 0 1 1
0 0 0 1 0 1 0
0 0 0 1 1 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 1
1 0 0 0 0 0 0


per(A) = 2
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Simple Graphs
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Basic Graphs

Simple Graphs

Graph Rearrangements With Stays
Pn 0, 1, 0, 1, 0... fn

Cn 0, 1, 2, 4, 2, 4... ln + 2 = fn + fn−2 + 2
Kn D(n) n!

Kn,n (n!)2
∑n

i=0 [(n)i ]
2

Km,n with m ≤ n 0
∑m

i=0(m)i (n)i
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Computational Counting

Game Pieces

Consider an m × n chessboard along with mn copies of a particular game
piece, one on each square. In how many ways can the pieces be
rearranged if they must each make one legal move? Or at most one legal
move? Can these rearrangement problems be solved with recurrence
techniques?

52 / 117



Combinatorial Rearrangements

Computational Counting

8× 8 Rook Graph
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8× 8 Knight Graph
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Computational Counting

Fibonacci Relations

1× n Kings

Fn

2× n Bishops

F 2
n

2× 2n Knights

F 4
n or F 2

n ∗ F 2
n−1
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2× 2n Knights

62 / 117



Combinatorial Rearrangements

Computational Counting

Knight Rearrangements
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Computational Counting

Knight’s Tour

8× 8 Knight’s Tour

26,534,728,821,064 [4]

8× 8 Knight Rearrangements

8,121,130,233,753,702,400
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Computational Counting

Hosoya Index of Trees

The Hosoya index is a topological invariant from computational
chemistry that is equivalent to the total number of matchings on a
graph. This index correlates with many physical properties of organic
compounds, especially the alkanes (saturated hydrocarbons).

Theorem

Let T be an n−tree with adjacency matrix A(T ). Then the Hosoya index
of T is equal to det(A(T )i + In)
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Computational Counting

Hosoya Index Proof

Proof.

Sketch.
Since T is a tree there is a direct bijection between a given cycle cover

on
←→
T with a self loop added to each vertex and a matching on T .

Furthermore, per(A(T ) + In) counts these cycle covers. To see that
det(A(T )i + In) = per(A(T ) + In) notice that each 2−cycle and thus
each even cycle counted in det(A(T )i + In) has a weight of i2 = −1, and
thus that the weight of each cycle cover is equal to the sign of the
permutation.
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Computational Counting

Isopentane Example
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Computational Counting

A(T )

per





0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0





= 584
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Computational Counting

A(T )i + I17

det





1 i i i i 0 0 0 0 0 0 0 0 0 0 0 0
i 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
i 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
i 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
i 0 0 0 1 i i i 0 0 0 0 0 0 0 0 0
0 0 0 0 i 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 i 0 1 0 i i i 0 0 0 0 0 0
0 0 0 0 i 0 0 1 0 0 0 i i i 0 0 0
0 0 0 0 0 0 i 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 i 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 i 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 i 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 i 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 i 0 0 0 0 0 1 i i i
0 0 0 0 0 0 0 0 0 0 0 0 0 i 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 i 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 i 0 0 1





= 584
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Theorems

Theorems
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Theorems

Bipartite Graphs Theorem

Theorem

Let G = ({U,V },E ) be a bipartite graph. The number of
rearrangements on G is equal to the square of the number of perfect
matchings on G .
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Theorems

Bipartite Graphs Proof

Proof.

Sketch.
Construct a bijection between pairs of perfect matchings on G and cycle

covers on
←→
G . WLOG select two perfect matchings of G , m1 and m2. For

each edge, (u1, v1) in m1 place a directed edge in the cycle cover from u1

to v1. Similarly, for each edge, (u2, v2) in m2 place a directed edge in the
cycle cover from v2 to u2. Since m1 and m2 are perfect matchings, by
construction, each vertex in the cycle cover has in–degree and out–degree
equal to 1.

Given a cycle cover C on
←→
G construct two perfect matchings on G by

taking the directed edges from vertices in U to vertices in V separately
from the directed edges from V to U. Each of these sets of (undirected)
edges corresponds to a perfect matching by the definition of cycle cover
and the bijection is complete.
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Theorems

P2 × G Theorem

Theorem

The number of rearrangements on a bipartite graph G, when the markers
on G are permitted to remain on their vertices, is equal to the number of
perfect matchings on P2 × G .

76 / 117



Combinatorial Rearrangements

Theorems

P2 × G Proof

Proof.

Sketch.
Observe that P2 × G is equivalent to two identical copies of G where
each vertex is connected to its copy by a single edge (P2). To construct a
bijection between these two sets of objects, associate a self–loop in a
cycle cover with an edge between a vertex and its copy in the perfect
matching. Since the graph is bipartite, the remaining cycles in the cycle
cover can be decomposed into matching edges from U to V and from V
to U as in the previous theorem.
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Theorems

Seating Rearrangements with Stays

Applying the previous theorem to the original problem of seating
rearrangements gives that the number of rearrangements in a m × n
classroom, where the students are allowed to remain in place or
move is equal to the number of perfect matchings in P2 × Pm × Pn.
These matchings are equivalent to tiling a 2×m × n rectangular
prism with 1× 1× 2 tiles.

A more direct proof of this equivalence can be given by identifying
each possible move type; up/down, left/right, or stay, with a
particular tile orientation in space.
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Theorems

LHCCRR Theorem

Theorem

On any rectangular m × n board B with m fixed, and a marker on each
square, where the set of permissible movements has a maximum
horizontal displacement, the number of rearrangements on B satisfies a
linear, homogeneous, constant–coefficient recurrence relation as n varies.
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Theorems

LHCCRR Proof

Proof.

Sketch.
Let d represent the maximum permissible horizontal displacement. Consider any set of
marker movements that completes the first column. After all of the markers in the
first column been moved, and other markers have been moved in to the first column
to fill the remaining empty squares, any square in the initial m × d sub–rectangle may
be in one of four states. Let S be the collection of all 4md possible states of the initial
m × d sub–rectangle, and let S∗ represent the corresponding sequences counting the
number of rearrangements of a board of length n beginning with each state as n
varies. Finally, let an denote the sequence that describes the number of
rearrangements on B as n varies.
For any board beginning with an element of S, consider all of possible sets of
movements that “complete” the initial column. The resulting state is also in S , and
has length n − k for some k in [1, d ]. Hence, the corresponding sequence can be
expressed as a sum of elements in S∗ with subscripts bounded below by n − d . This
system of recurrences can be expressed as a linear, homogeneous, constant–coefficient
recurrence relation in an either through the Cayley–Hamilton Theorem or by the
successor operator matrix.
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Theorems

Torus 4,6
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Theorems

LHCCRR Extensions

Cylinders

Cm × Pn

Pm × Cn

Möbius strip

Tori Cm × Cn
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LHCCRR Extensions
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Graph Families

Wheel Graph Order 12

89 / 117
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Graph Families

Wheel Graphs Rearrangements

The number of rearrangements on a wheel graph of order n is equal to n2

n odd

Uniquely determined by the center vertex: n · n = n2

n even

Must create an odd cycle:
n

2
· 2n = n2

n 3 4 5 6 7 8 9 10 n
No stays 9 16 25 36 49 64 81 100 n2

With stays 24 53 108 212 402 745 1356 2435 ???
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Graph Families

Wheel Graph Rearrangements with Stays

The number of rearrangements on a wheel graph when the markers are
permitted to either move or stay is equal to nfn+2 + fn + fn−2 − 2n + 2.
Condition on the behavior of the center marker:

if it remains in place,

Cn = fn + fn−2 + 2

if it moves to one of the n other vertices,

nfn−1 + 2n
∑n

k=2 fn−k = nfn−1 + 2nfn − 2n

fn + fn−2 + 2 + nfn−1 + 2nfn − 2n = n((fn−1 + fn) + fn) + fn + fn−2 − 2n + 2

= n(fn+1 + fn) + fn + fn−2 − 2n + 2

= nfn+2 + fn + fn−2 − 2n + 2.

94 / 117



Combinatorial Rearrangements

Graph Families

Wheel Graph Rearrangements with Stays

The number of rearrangements on a wheel graph when the markers are
permitted to either move or stay is equal to nfn+2 + fn + fn−2 − 2n + 2.
Condition on the behavior of the center marker:

if it remains in place,

Cn = fn + fn−2 + 2

if it moves to one of the n other vertices,

nfn−1 + 2n
∑n

k=2 fn−k = nfn−1 + 2nfn − 2n

fn + fn−2 + 2 + nfn−1 + 2nfn − 2n = n((fn−1 + fn) + fn) + fn + fn−2 − 2n + 2

= n(fn+1 + fn) + fn + fn−2 − 2n + 2

= nfn+2 + fn + fn−2 − 2n + 2.

95 / 117



Combinatorial Rearrangements

Graph Families

Wheel Graph Rearrangements with Stays

The number of rearrangements on a wheel graph when the markers are
permitted to either move or stay is equal to nfn+2 + fn + fn−2 − 2n + 2.
Condition on the behavior of the center marker:

if it remains in place,

Cn = fn + fn−2 + 2

if it moves to one of the n other vertices,

nfn−1 + 2n
∑n

k=2 fn−k = nfn−1 + 2nfn − 2n

fn + fn−2 + 2 + nfn−1 + 2nfn − 2n = n((fn−1 + fn) + fn) + fn + fn−2 − 2n + 2

= n(fn+1 + fn) + fn + fn−2 − 2n + 2

= nfn+2 + fn + fn−2 − 2n + 2.

96 / 117



Combinatorial Rearrangements

Graph Families

Wheel Graph Rearrangements with Stays

The number of rearrangements on a wheel graph when the markers are
permitted to either move or stay is equal to nfn+2 + fn + fn−2 − 2n + 2.
Condition on the behavior of the center marker:

if it remains in place,

Cn = fn + fn−2 + 2

if it moves to one of the n other vertices,

nfn−1 + 2n
∑n

k=2 fn−k = nfn−1 + 2nfn − 2n

fn + fn−2 + 2 + nfn−1 + 2nfn − 2n = n((fn−1 + fn) + fn) + fn + fn−2 − 2n + 2

= n(fn+1 + fn) + fn + fn−2 − 2n + 2

= nfn+2 + fn + fn−2 − 2n + 2.

97 / 117



Combinatorial Rearrangements

Graph Families

Wheel Graph Rearrangements with Stays

The number of rearrangements on a wheel graph when the markers are
permitted to either move or stay is equal to nfn+2 + fn + fn−2 − 2n + 2.
Condition on the behavior of the center marker:

if it remains in place,

Cn = fn + fn−2 + 2

if it moves to one of the n other vertices,

nfn−1 + 2n
∑n

k=2 fn−k = nfn−1 + 2nfn − 2n

fn + fn−2 + 2 + nfn−1 + 2nfn − 2n = n((fn−1 + fn) + fn) + fn + fn−2 − 2n + 2

= n(fn+1 + fn) + fn + fn−2 − 2n + 2

= nfn+2 + fn + fn−2 − 2n + 2.

98 / 117



Combinatorial Rearrangements

Graph Families

Wheel Graph Rearrangements with Stays
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Graph Families

Prism Graph of Order 12
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Graph Families

Prism Graphs

The number of rearrangements on a prism graph of order n is equal to
(ln + 2)2 if n is even and l2n + 2 if n is odd.

n is even.

The graph is bipartite and isomorphic to Cn × P2. Hence, the
number of rearrangements is equal to the square of the number of
rearrangements on Cn with stays permitted.

n is odd.

There is a bijection between pairs of Lucas tilings of length n and
prism graph rearrangements where at least one marker moves
between rows. The only uncounted rearrangements are the four
where each marker remains in its original row. Thus, we have

l2
n + 4 =

(
l2
n + 2

)
= l2n + 2

n 3 4 5 6 7 8 n
No stays 20 81 125 400 845 2401 l2n + 2 | (ln + 2)2

With stays 82 272 890 3108 11042 39952 ???
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Graph Families

Prism Graphs

The number of rearrangements on a prism graph of order n is equal to
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The graph is bipartite and isomorphic to Cn × P2. Hence, the
number of rearrangements is equal to the square of the number of
rearrangements on Cn with stays permitted.

n is odd.

There is a bijection between pairs of Lucas tilings of length n and
prism graph rearrangements where at least one marker moves
between rows. The only uncounted rearrangements are the four
where each marker remains in its original row. Thus, we have

l2
n + 4 =

(
l2
n + 2

)
= l2n + 2

n 3 4 5 6 7 8 n
No stays 20 81 125 400 845 2401 l2n + 2 | (ln + 2)2

With stays 82 272 890 3108 11042 39952 ???
105 / 117



Combinatorial Rearrangements

Graph Families

Hypercube of Order 4
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Graph Families

Hypercubes

Since Hn is bipartite, the number of rearrangements on a n−cube is equal
to the square of the number of perfect matchings on that cube. Similarly,
because Hn

∼= Hn−1 × P2, the number of rearrangements with stays on a
n−cube is equal to the number of perfect matchings in an n + 1 cube.

1 2 3 4 5
R(n) no stays 1 4 81 73984 347138964225
R(n) with stays 2 9 272 589185 16332454526976
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